

The Certified Energy Manager (CEM®) Program for Professional Certification

Date: 11- 14 December, 2006

Venue: To be Advised (in Hong Kong)

Course Code: CEM 01/06/HK

THE MARK OF AN ENERGY PROFESSIONAL

Since it's inception in 1981, the Certified Energy Manager (CEM®) credential has become widely accepted and used as a measure of professional accomplishment within the energy management field. It has gained industry-wide use as the standard for qualifying energy professionals both in the United States and worldwide. It is recognized by the U.S. Department of Energy, the Office of Federal Energy Management Programs (FEMP), and the U.S. Agency for International Development, as well as by numerous state energy offices, major utilities, corporations and energy service companies. By attaining the status of CEM, you will be joining an elite group of 6,000 professionals serving industry, business and government throughout the U.S. and in 22 countries. These high-achieving individuals comprise a "Who's Who" in the energy management field.

COMPREHENSIVE 4-DAY TRAINING PROGRAM FOR ENERGY MANAGERS (prep: CEM Certification)

This is the first ever course (same as the course held in USA) with the USA instructors traveled from the headquarters to Hong Kong. Metric units will be taught in Hong Kong instead of Imperial units in USA. CEM certificates will be issued directly from Association of Energy Engineers (USA Headquarters) after passing the exam with eligibility conditions of experience and qualifications. To obtain further information on the CEM program, please visit the web site www.aeecenter.org/certification/cem.

Course Price:	US \$1,695.00	(HK \$13,240)
Exam Price:	US \$200.00	(HK \$1,560)

ABOUT THE COURSE

This special in-depth four-day course is ideal for professionals who seek a more detailed program of instruction covering the technical, economic and regulatory aspects of effective energy management. The program provides detailed coverage of all of the 26 training sections specified for energy managers in the field, and offers a comprehensive learning and problem-solving forum for those who want a broader understanding of the latest energy cost reduction techniques and strategies.

INSTRUCTORS

BARNEY L. CAPEHART, Ph.D., C.E.M., is a professor emeritus of industrial and systems engineering at the University of Florida, Gainesville. He has broad experience in the commercial/industrial sector, having served as director of the University of Florida Industrial Assessment Center from 1990 to 1999. He has personally conducted over 100 audits of industrial facilities, and has assisted students in conducting audits of hundreds of office buildings, and other non-industrial facilities. He is a fellow of IEEE, IIE, and AAAS.

SCOTT C. DUNNING, Ph.D., P.E., C.E.M., is the Executive Director of the Advanced Manufacturing Center at the University of Maine where he leads energy assessments and production line development for industrial manufacturers. He was the founding director of the Industrial Assessment Center at the University of Maine where he directed over 200 audits of industrial facilities throughout New England. He previously served as a Program Manager at the U.S. Department of Energy where he assisted in management of the Industrial Assessment Center program and reported to the U.S. Congress regarding implementation efforts of the Energy Policy Act of 1992. He is a Professor of Electrical Engineering Technology at the University of Maine where he teaches courses in power systems analysis, energy conversion and engineering economics.

COURSE OUTLINE

THE NEED FOR ENERGY MANAGEMENT	ENERGY CODES AND STANDARDS	
 Building energy cost control 	Building codes	 Standards of care: ASHRAE Standard 62
 Utility DSM programs and deregulation: energy efficiency and peak demand reduction 	 ASHRAE standards (62, 15, 3, 90.1) ASME IEEE and other 	 Reasons for managing indoor air quality Acceptable air quality
 Commercial business energy cost control Industrial plant operation improvement Reducing energy costs Reducing environmental emissions Improving product quality Improving plant productivity 	 ASME, IEEE, and other standards Federal legislation: NECPA, PURPA, NGPA, CAAA, NEPA of 1992 CFC replacements: Montreal Protocol, global climate change National Energy Policy Act of 1992 	 Acceptable air quality Ventilation rate procedure, Air quality procedure Typical air contaminants; VOCs and bioaerosols IAQ problems; CO2 measurement and control AEE Certified IAQ Professional requirements
CONDUCTING AN ENERGY AUDIT	ELECTRIC RATE STRUCTURES	BOILERS AND STEAM GENERATION
 Purpose of the energy audit 	• Short history of electric rates	 Basics of combustion systems:
 Facility description and data needs 	• The difference between power and energy	excess air control
 Major systems in the facility 	Electric meters	 Boiler efficiency improvement: blowdown management,
 Data forms for recording information 	Components of electric rates	 condensate return, turbulators Combustion controls
	Example rate structures	
Collecting the actual data	Factors in controlling electric	Waste heat recovery
 Identification of preliminary energy management opportunities 	 Costs Electric utility incentive programs 	 Steam traps: purpose and testing
		Process insulation
 Energy audit reports 	 Special schedules (interruptible, TOU, realtime pricing) 	• Example of boiler improvement

The Association of Energy Engineers Hong Kong Chapter

ENERGY AUDIT MOTORS AND ADJUSTABLE **GREEN BUILDINGS** INSTRUMENTATION SPEED DRIVES Introduction to sustainability The need for instrumentation How motors work The USGBC and the LEED • Light level meters • High-efficiency motors rating systems for new construction (NC) and existing . Electric meters: voltages, Examples of cost-effective motor building (EB) current, power, energy, power changes Summarization of the factor • Use of adjustable speed drives prerequisites and credits for Temperature-measuring . LEED NC Example of cost-effective ASD instruments use • Summarization of the Combustion efficiency prerequisites and credits for Improved motor belts and drives measurement LEED EB Compressed air management Air flow and air leak • EPA ENERGY STAR Program • measurement and Portfolio Manager Adjustable speed drive alternatives: eddy current Thermography ASHRAE Green Guide • • clutches, variable frequency Ultrasonic leak detectors drives, inlet and outlet vane • Benefits to the community, control, etc. owners, and occupants Data logging **ENERGY ACCOUNTING IN** MANAGEMENT LIFE CYCLE COSTING **BUILDINGS AND FACILITIES** Peak load reduction Concept of life cycle costing Energy use index, energy cost • Power factor improvement Purchase costs vs. operating • index costs Where energy is used in • Energy management control systems Example analyses facilities Load management Government standards: FEMP . Lighting and HVAC energy use . Harmonics and other power FUEL SUPPLY AND FUEL **ENERGY RATE STRUCTURES** quality issues SWITCHING Identifying types of energy used **HVAC SYSTEM** • Alternative fuel choices • Electric rates, gas rates Types of HVAC systems and • • Technology choices: HVAC Oil, coal, and other rates new technologies systems, boilers, heaters, industrial processes Steam and hot water rates The vapor-compression cycle • Benefits of deregulation: electric Factors in controlling fuel costs COPs and EERs and gas Utility incentive programs • Air conditioning loads **ALTERNATIVE FINANCING** Chiller improvement example • Different financing methods WASTE HEAT RECOVERY (5) Control, thermal storage, • Attributes of each method • Objectives: design criteria absorption systems After-tax cash flow analysis • • Types and maintenance of heat exchangers Recuperators; economizers

The Association of Energy Engineers Hong Kong Chapter

BUILDING COMMISSIONING	BUILDING ENERGY USE AND PERFORMANCE	ECONOMIC ANALYSIS OF ALTERNATIVE INVESTMENTS	
• What is commissioning-including new and existing buildings?	 Fuel types and costs 	• Economic decision analysis	
• Why we need commissioning and its benefits	 Energy content of fuels 	Simple economic measures	
• The project team: roles and responsibilities	Energy conversion factorsBuilding envelope	The time value of moneyPresent and future values	
 New building commissioning: project phases Retro-commissioning, recommissioning: project phase 	 Natural gas purchasing Retail wheeling of electricity Major building energy use systems 	 Cost and benefit analysis Rate of return Life cycle costing 	
 objectives Total and whole building commissioning 	LIGHTING	 After tax cash flows 	
 Testing, adjusting, and balancing-verification, system by system Summary of applicable codes, organizations, guidelines: ASHRAE, USGBC LEED, SMACNA, BCA, AEE's CBCP Certification 	 Basics of lighting and current lighting technologies New lighting technologies Economic evaluation of example lighting improvements Lighting standards EPA Green Lights program T12, T8, T5 lamps Compact fluorescents HID, sulfur lamps 	CONTROLS AND ENERGY MANAGEMENT Night set back Optimum start/stop Enthalpy economizers Temperature resets PID controls, pneumatic controls Control characteristics BACNET and LONworks; TCP/IP; GUIs DDC 	
WASTE HEAT RECOVERY	COGENERATION (CHP)	MAINTENANCE	
 Objectives: design criteria Types and maintenance of heat exchangers Recuperators; economizers INSULATION Types of insulation Heat flow calculations Economic levels of insulation 	 What is cogeneration Types of cogeneration cycles Examples of cost-effective use of cogen QF and deregulation Use of waste for fuel 	 Maintenance management systems Monitoring for maintenance Infrared photography for maintenance Cost of: Air, steam, gas leaks; uninsulated surfaces 	
Passive thermal energyWhere the action is?			

Examination Requirement

All CEM candidates must satisfactorily complete a four-hour written open-book exam, proctored by an approved exam administrator. Of the following seventeen sections of the exam, candidates must complete at a minimum of eleven, including those indicated as **Required**:

- 1. Codes & Standards & Indoor Air Quality Required
- 2. Energy Accounting and Economics Required
- 3. Energy Audits and Instrumentation Required
- 4. Electrical Systems
- 5. HVAC Systems
- 6. Motors and Drives
- 7. Industrial Systems
- 8. Building Envelope
- 9. Cogeneration and CHP Systems

- 10. Energy Procurement
- 11. Building Automation and Control Systems
- 12. Green Buildings, LEED & Energy Star
- 13. Thermal Energy Storage Systems
- 14. Lighting
- 15. Boiler and Steam Systems
- 16. Maintenance & Commissioning
- 17. Alternative Financing

Eligibility

The prerequisites to qualify for the certification process have been designed to take into account the possible diversity of education and practical experience an individual may have. However each CEM candidate must meet one of the following criteria:

- A four-year **engineering degree and/or P.E.**, with at least *three* years experience in energy engineering or energy management.
- A four-year **business or related degree**, with at least *five* years experience in energy engineering or energy management.
- A two-year technical degree, with *eight* years experience in energy engineering or energy management.
- *Ten* years or more verified experience in energy engineering or energy management.

(Note: Letters of reference and verification of employment must be submitted.)

Application forms will be distributed the students after the course/exam for the CEM certification.

< REPLY SLIP >

The Certified Energy Manager (CEM®) Program for Professional Certification

Course Code: CEM 01/06/HK

To register, please complete the reply slip by fax 2343 3132 and mail with your crossed cheque payable to:

"AEE Hong Kong Chapter"

c/o ISPL Consulting Ltd

Unit 502, Kwai Hung Holdings Centre, 89 King's Road, North Point, Hong Kong,

Attention: Dr. Leonard Chow, (Course Convener)

(Course Enquiry: 2566 3397, leonardchow@ispl.com.hk)

Deadline: 11 October 2006

(Very Limited Students Intake)

CEM Course		Fee
Package A	Course Only	HK\$13,240 each
Package B	Course + Examination + CEM Certificate	HK\$14,800 each

Package A:	or	Package B:	(Tick as appropriate)
Name:			(Ir/Mr/Ms/Miss)
Organization:			
Address:			
Email Address:		Fax #:	
Contact Phone: (Office)		(Mobile)	
Cheque no.:		Amount (HK\$): _	